
論文 / 著書情報
Article / Book Information

Title Robust Discriminative Training Against Data Insufficiency in PLDA-
Based Speaker Verification

Authors Johan Rohdin, Sangeeta Biswas, Koichi Shinoda

Citation Elsevier Computer Speech and Language, vol. 35, pp. 32-57

Pub. date 2015, 6

DOI http://dx.doi.org/10.1016/j.csl.2015.06.003

Creative Commons  See next page.

Note  このファイルは著者（最終）版です。
This file is author (final) version.

Powered by T2R2 (Science Tokyo Research Repository)

http://dx.doi.org/10.1016/j.csl.2015.06.003
http://t2r2.star.titech.ac.jp/


              
 

License 
 

 

 

Creative Commons: CC BY-NC-ND 

https://creativecommons.org/licenses/by-nc-nd/4.0/


Robust Discriminative Training Against Data Insufficiency in PLDA-based Speaker

Verification

Johan Rohdin, Sangeeta Biswas, and Koichi Shinoda

Tokyo Institute of Technology, Japan

Abstract

Probabilistic linear discriminant analysis (PLDA) with i-

vectors as features has become one of the state-of-the-art meth-

ods in speaker verification. Discriminative training (DT) has

proven to be effective for improving PLDA’s performance but

suffers more from data insufficiency than generative training

(GT). In this paper, we achieve robustness against data insuf-

ficiency in DT in two ways. First, we compensate for statistical

dependencies in the training data by adjusting the weights of

the training trials in order for the training loss to be an accurate

estimate of the expected loss. Second, we propose three con-

strained DT schemes, among which the best was a discrimina-

tively trained transformation of the PLDA score function having

four parameters. Experiments on the male telephone part of the

NIST SRE 2010 confirmed the effectiveness of our proposed

techniques. For various number of training speakers, the com-

bination of weight-adjustment and the constrained DT scheme

gave between 7% and 19% relative improvements in Ĉllr over

GT followed by score calibration. Compared to another base-

line, DT of all the parameters of the PLDA score function, the

improvements were larger.

1. Introduction

In recent years, the combination of i-vector (Dehak et al.,

2009, 2011) and probabilistic linear discriminant analysis (PLDA)

(Ioffe, 2006; Kenny, 2010) has become one of the state-of-the-

art systems in speaker verification. In this system, utterances

are mapped into low dimensional vectors known as i-vectors.

An i-vector contains information related to the speaker identity

as well as irrelevant factors such as speaker’s emotions, trans-

mission channels, languages, and environmental noise. Given

two i-vectors, the PLDA model separates speaker factors from

irrelevant factors and provides a log-likelihood ratio (LLR) score

for the two i-vectors being from the same speaker or not.

The PLDA parameters are usually optimized by generative

training (GT) under the maximum likelihood (ML) criterion.

However, several studies have suggested that discriminative train-

ing (DT) is beneficial, either as a complement or as an alterna-

tive to GT (Brümmer, 2010; Burget et al., 2011; Cumani et al.,

2011, 2012, 2013; Borgström and McCree, 2013). In particular,

score calibration by means of a discriminatively trained affine

transformation (AT-Cal) (Brümmer, 2010), has become popu-

lar. AT-Cal only adjusts the scores and can therefore be applied

to any speaker verification system. DT schemes that are specific

to PLDA have also been proposed. A DT scheme that optimizes

all the parameters of the PLDA LLR score function (Scr-UC)1

was proposed by Burget et al. (2011) and Cumani et al. (2011)

and a DT scheme that optimizes the PLDA model parameters

instead of its score function, was proposed by Borgström and

McCree (2013). However, DT is in general less robust against

data insufficiency than GT. For example, in Cumani and Laface

(2014), Scr-UC was worse than GT when the number of train-

ing speakers was less than around 1600. In this paper, we tackle

the data insufficiency problem in two approaches. One is to ef-

fectively use the limited amount of training data. The other is

to constrain the model parameters to avoid overfitting.

When the amount of training data is limited, each training

utterance or speaker is often used in more than one training

trial in the model training. Accordingly, the training trials are

not statistically independent. As a consequence, the average
loss of the training trials that we use as training objective is not

the best estimate of the expected loss. We propose to adjust the

weights of the training trials in order to obtain the best linear
unbiased estimator (BLUE) of the expected loss.

In order to find the constraints that best avoid overfitting

without constraining the model too much, we propose three dis-

criminative training schemes that are less constrained than Src-

UC (Burget et al., 2011; Cumani et al., 2011) but more flexible

than AT-Cal (Brümmer, 2010). The first is a transformation of

the PLDA LLR score function having four parameters. The sec-

ond is a scaling of each element in the i-vectors. The third is

a training scheme that, like Src-UC, updates all parameters of

the PLDA LLR score function but preserves some properties

of PLDA that are removed by Scr-UC (Rohdin et al., 2014a).

Experiments on the male telephone part of the NIST SRE 2010

confirmed the effectiveness of our proposed techniques.

The remainder of this paper is organized as follows. Section

2 introduces the necessary background including the detection

cost function, i-vector and PLDA based speaker-verification and

discriminative PLDA training. Section 3 performs an analysis

of the discriminative training methods. Based on the conclu-

sions in Section 3, Section 4 presents the compensation for the

statistical dependence, and Section 5 presents constrained dis-

criminative PLDA training. Section 6 experimentally evaluates

the methods. Finally, Section 7 concludes this paper.

1UC refers to unconstrained.
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2. Background

2.1. Detection cost function

When making a decision based on the score from a speaker

verification system, it is typically desired to minimize the ex-

pected cost of the decision. This is reflected in the detection
cost function (DCF) used in the NIST evaluations. When the

test and enrollment utterances in a trial are from the same speaker,

we refer to the trial as a target trial, otherwise we refer to it as

a non-target trial. The DCF measures the cost for an applica-

tion with a prior probability of a target trial, Ptar, and the costs

CFR and CFA for false rejection (FR) and false acceptance (FA)

respectively.

DCF = PtarCFRPFR + (1 − Ptar)CFAPFA, (1)

where PFR = P(error|target) and PFA = P(error|non-target) are

the empirical probabilities for FR and FA respectively estimated

in the evaluation database. For the purpose of ranking systems,

a scaling of the DCF does not make any difference. Therefore,

for system optimization it is equivalent to use

DCF′ = PeffPFR + (1 − Peff)PFA, (2)

where

Peff =
PtarCFR

PtarCFR + (1 − Ptar)CFA

, (3)

is known as the effective prior. In order to minimize the DCF,

the decision threshold for the LLR score should be set to

τ = −
(
log

Ptar

1 − Ptar

+ log
CFR

CFA

)

= − log
Peff

1 − Peff

. (4)

Therefore, if the speaker verification system outputs scores that

can be interpreted as LLRs, the threshold can easily be obtained

for any Peff. The cost obtained by using τ as the decision thresh-

old is called the actual detection cost (actDCF) and the cost ob-

tained by the optimal threshold for the evaluation set, is called

the minimum detection cost (minDCF). If actDCF and minDCF

are similar, we say that the LLR scores are well calibrated for

the particular Peff.

2.2. i-vector based system

In the i-vector system (Dehak et al., 2011), it is assumed

that the features from an utterance are generated by a Gaussian
Mixture Model (GMM). It is further assumed that the GMM-

supervector, μ, corresponding to an utterance can be modeled

as

μ = μ̄ + Tφ, (5)

where φ is a random vector, T is a basis matrix for the total
variability space, and μ̄ is the mean of μ. It is assumed that

φ follows a standard normal distribution and its dimension, d,

i.e., the rank of T, is lower than the dimension of μ. Given the

speech features of an utterance, the i-vector, ω, is the maximum
a posteriori estimate of φ.

An i-vector contains information related to the speaker iden-

tity as well as irrelevant channel factors such as the speaker’s

emotions, transmission channels, language, and environmental

noise. Channel factors should be removed in order to improve

the accuracy of verification. Currently, PLDA has become one

of the state-of-the-art channel compensation techniques in i-

vector based speaker verification (Kenny, 2010).

2.3. PLDA
PLDA was originally proposed in image processing for ob-

ject/face recognition (Ioffe, 2006; Prince and Elder, 2007). Kenny

(2010) proposed to use it in speaker verification with i-vectors

as features. In its most general form, PLDA assumes that the

feature vectors (i-vectors), ω, are generated as:

ω = m+ Vy + Ux + Dz, (6)

where m is the mean of ω, y is a random vector depending on

the class, and, x and z are random vectors depending on the

channel, i.e., they are different from session to session. Con-

trary to the GMM-supervector, the i-vector is observed, which

means that U and D must together span the full i-vector space.

Two different PLDA configurations are popular. The config-

uration suggested by Prince and Elder (2007) constrains both

V and U to have a rank lower than d, and D to be diagonal.

This configuration is suitable for large d. This PLDA model is

very similar to joint factor analysis (JFA) (Kenny, 2005; Kenny

et al., 2007). The configuration suggested by Ioffe (2006) skips

U but puts no constraints on D, i.e.,

ω = m+ Vy + Dz. (7)

This is the most popular configuration in speaker verification

(Kenny, 2010; Brümmer and de Villiers, 2010) and we will use

it in this study. The speaker matrix, V, may have a rank lower

than d (Kenny, 2010), or equal to d (Brümmer and de Villiers,

2010) in which case the model is known as the two-covariance
model.

The original PLDA model (Ioffe, 2006; Prince and Elder,

2007) assumes y, x and z follow Gaussian distribution (G-PLDA).

However, the elements of the i-vector are, in reality, more heavy-

tailed than the Gaussian distribution. Therefore, an extension

named heavy-tailed PLDA (HT-PLDA), based on t-distributions,

has been proposed (Kenny, 2010). HT-PLDA has much bet-

ter performance than G-PLDA but is much slower both in the

training and the testing phase. Later, normalizing the i-vectors

to unit length, was shown to greatly improve the Gaussianity

of the i-vectors so that G-PLDA provides similar performance

as HT-PLDA (Garcia-Romero and Espy-Wilson, 2011). From

here on, we only consider G-PLDA and refer to it as PLDA.

Given two i-vectors, ωi and ω j, the LLR score is given by

si j = log
p
(
ωi,ω j|Hs

)
p
(
ωi,ω j|Hd

) , (8)

where the hypothesesHs andHd are the following:

Hs: ωi and ω j are from the same speaker.
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Hd: ωi and ω j are from different speakers.

According to Eq. (7), two i-vectors are generated by,

[ωi

ω j

]
=

[m
m

]
+

[
V 0
0 V

] [ yi

y j

]
+

[
D 0
0 D

] [ zi

z j

]
, (9)

where the speaker factors, yi and y j are the same in a target trial

but different in a non-target trial. Accordingly, [ωT
i ω

T
j ]T fol-

lows a multivariate normal distribution. Calculating the mean

and covariance of an i-vector pair in a target and a non-target

trial based on Eq. (9) and plugging the resulting multivariate

normal distributions into Eq. (8) results in a closed-form ex-

pression of the LLR given by

si j = ω
T
i Pω j + ω

T
j Pωi + ω

T
i Qωi + ω

T
j Qω j

+(ωi + ω j)
T c + k, (10)

where

P =
1

2
Σ−1

totΣac(Σtot − ΣacΣ
−1
totΣac)−1, (11)

Q =
1

2
Σ−1

tot − (Σtot − ΣacΣ
−1
totΣac)−1, (12)

c = −2(P + Q)m, (13)

k =
1

2
(log |Σtot| − log |Σtot − ΣacΣ

−1
totΣac|)

+mT 2(P + Q)m, (14)

and Σac = VVT and Σtot = VVT+DDT . Let γ = [vec(P)T , vec(Q)T , cT , k]T ,

where vec(·) stacks the columns of a matrix into a column vec-

tor, and let

ϕ(ωi,ω j) =

⎡⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎣
vec(ωiω

T
j + ω jω

T
i )

vec(ωiω
T
i + ω jω

T
j )

ωi + ω j

1

⎤⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎦ . (15)

Then Eq. (10) can be rewritten as (Burget et al., 2011; Cumani

et al., 2011)

si j = γ
Tϕ(ωi,ω j). (16)

In other words, the PLDA LLR score is a linear function of a

non-linear feature expansion ϕ(ωi,ω j) of the two i-vectors.

Typically, the PLDA parameters are estimated by the gen-

erative maximum likelihood (ML) criterion.

2.4. Discriminative training

As mentioned in the previous subsection, normalizing the

i-vectors to unit length improves their Gaussianity and substan-

tially improves the performance of PLDA. However, even with

length normalization, it is clear that there is still a mismatch be-

tween the model assumptions and the training data. Obviously

a PLDA model cannot generate i-vectors of a fixed length. Fur-

ther, it has been shown that for length-normalized i-vectors, the

within-class covariance depends strongly on the speaker factors

(Bousquet et al., 2014), whereas PLDA assumes the within-

class covariance is independent of the speaker factors. If the

model assumptions are not accurate, we cannot expect the pa-

rameters obtained by GT to be optimal neither for discrimi-

nating between speakers nor for providing well-calibrated LLR

scores. Therefore, it might be better to use a DT criterion that

directly optimizes the model for providing accurate LLR scores.

Discriminative training has been proven very effective for

score calibration and fusion (Brümmer et al., 2007; Brümmer,

2010) based on affine functions. Given the scores s1, . . . , sn

from n different systems, the fused and/or calibrated score is

given by

s = w0 + w1s1 + . . . + wnsn, (17)

where the parameters w = [w0, . . . ,wn] need to be estimated.

Let th ∈ [−1, 1] be the label of trial h, i.e., it equals 1 if the two

utterances are from the same speaker and −1 otherwise. Then

w can be estimated by minimizing the loss, l̄(w),

l̄(w) =
∑

h:th=1

Peff

N1

l (th, sh(w), τ)

+
∑

h:th=−1

1 − Peff

N−1

l (th, sh(w), τ) , (18)

where N1 and N−1 are the numbers of target and non-target trials

respectively, and l (th, sh(w), τ) is a loss function for a trial. In

this study, we follow Brümmer et al. (2007) and use the logistic

regression loss function given by

l (th, sh(w), τ) = log
(
1 + exp(−th(sh(w) − τ)) . (19)

This loss function encourages both good calibration and dis-

crimination (Brümmer and du Preez, 2006). See Brümmer and

Doddington (2013) for a comparison of different such loss func-

tions. With n = 1, we obtain an affine transformation of the

scores which has become the standard approach for calibra-

tion (Brümmer et al., 2007; Brümmer, 2010). We refer to this

method as AT-Cal. An affine transformation results in a very

constrained update of the score function that cannot increase the

system’s ability to discriminate between target and non-target

trials, i.e., to reduce minDCF. On the other hand it can sub-

stantially improve calibration, even with quite small amounts

of data.

Burget et al. (2011) and Cumani et al. (2011) proposed to

optimize the parameters γ in Eq. (16), by minimizing the loss

in Eq. (18) where sh is a function of γ instead of w. Both the lo-

gistic regression loss in Eq. (19) and the SVM hinge loss were

evaluated. In these studies, all possible i-vector pairs (typically

some hundred millions) were used for training, and efficient cal-

culations of the total loss and its gradient with respect to γ were

presented. However, this method easily overfits to the train-

ing data due to the large number of parameters to be estimated.

We refer to this method as Scr-UC, where UC refers to uncon-
strained. Scr-UC is similar to a DT scheme for JFA, proposed

by Burget et al. (2008).

Borgström and McCree (2013) considered discriminative

PLDA training with multiple enrollment sessions. The pro-

posed training scheme applies DT to the model parameters, m,

V and D, rather than the parameters of the LLR score function.
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The training trials were from either single or multiple enroll-

ment sessions. Only the eigenvalues (which were floored to

be positive) or a scaling factor of the covariance matrices were

updated by DT. The number of parameters to be estimated are

therefore much fewer than in Scr-UC, which reduces the risk of

over-training.

While GT uses utterances as observations and the speaker

IDs as classes, DT aims directly at improving the LLR score

and uses trials as observations and same or different speaker as

classes. The trials need to be constructed from the available

training data, ideally over all possible trials. However, when a

training utterance (or just the same speaker) is used in more than

one trial, the trials will be statistically dependent. Further, when

the parameters γ are optimized directly, rather than the original

PLDA model parameters, m, V and D, we may obtain a model

with different properties than a PLDA model. Optimizing the

parameters m, V and D preserves the properties of the PLDA

model but is more difficult due to the complex relation between

these parameters and P, Q, c and k, given by Eqs. (11) to (14).

These issues will be analyzed in the following section.

3. Analysis of discriminative PLDA training

In this section we carry out two analyses:

1. What is the effect of using statistically dependent trials in

DT?

2. What is the effect of training the parameters of the PLDA

LLR score directly instead of training the original param-

eters of the PLDA model?

Analysis 1 leads us to propose a compensation for the statisti-

cal dependence in Section 4. Analysis 2 motivates us to propose

one of the constrained DT schemes in Section 5. In the remain-

der of this paper, θ denotes the parameters to be estimated by

DT (e.g., w in AT-Cal or γ in Scr-UC).

3.1. The effect of using statistically dependent trials

In this subsection we discuss how DT is affected by the use

of statistically dependent trials. We argue that using an equal

weight for all target trials and another equal weight for all non-

target trials in the training objective is not optimal when the

trials are statistically dependent. For example, consider the cor-

relations due the same speakers being used in many training

trials. If each trial has equal weight, speakers with many trials

will influence the model more than speakers with few trials. In

order to avoid this speaker dependency in the model and make it

good for the general population, the weights for speakers with

many trials need to be reduced. The remaining discussion in

this subsection does not consider the reason for the statistical

dependencies. In section 4 we show how to apply the principles

discussed in this subsection specifically to the statistical depen-

dencies that arise when all possible training trials are used, i.e.,

the same speakers and utterances are used in more than one

training trial.

A trial consists of a label T ∈ [1,−1] and two i-vectors Ωi

and Ω j. Here, we use upper case letters to denote that we treat

these variables as random variables. We collect the i-vector pair

of a trial in a vector denoted Ω(p) = [ΩT
i ,Ω

T
j ]T . The loss of a

trial, L(θ) = l
(
T, s(θ,Ω(p))

)
, is then also a random variable. The

training trials are observations of these random variables. Anal-

ogously, we use l̄(θ) to denote the average loss of an observed

set of training trials as in Eq. (18), and L̄(θ) to be the corre-

sponding random variable, i.e., the average loss of a set of trials

treated as random variables. The expected loss of a single trial

is given by

ET,Ω(p) L(θ)

= ET,Ω(p)

(
l(θ,T,Ω(p))

)
=
∑

T=−1,1

P(T )

∫
R2d

l
(
T, s(θ,Ω(p))

)
P(Ω(p)|T )d2dΩ(p) (20)

where P(T = 1) = Peff, P(T = −1) = 1 − Peff and P(Ω(p)|T ) is

the probability density function for the i-vector pair conditioned

on the trial label. Discriminative training aims to find the θ that

minimizes ET,Ω(p)

(
L(θ)
)

by minimizing l̄(θ). In order for this

approach to be successful, L̄(θ) must be a good estimator of

ET,Ω(p)

(
L(θ)
)

for each value of θ.
Let us generalize the DT objective as

L̂(θ) = P̃effL̂1(θ) + (1 − P̃eff)L̂−1(θ), (21)

where 0 ≤ P̃eff ≤ 1,

L̂1(θ) =
∑

h:th=1

βhl
(
th, θ,Ω

(p)

h

)
, (22)

L̂−1(θ) =
∑

h:th=−1

βhl
(
th, θ,Ω

(p)

h

)
, (23)

and ∑
h:th=1

βh =
∑

h:th=−1

βh = 1. (24)

Here L̂1(θ) and L̂−1(θ) are estimators of the expected loss of a

target and non-target trial respectively, and βh is the weight for

trial h. The expected loss of a trial with label t, EΩ(p) |t(L(θ)),
is not affected by the fact that the trials are statistically depen-

dent. As long as Eq. (24) is fulfilled, P̃eff = Peff therefore gives

an unbiased estimate of the expected loss, ET,Ω(p)

(
L(θ)
)

(for any

θ). In addition, we propose to adjust the trial weights, βh, so

that the variances of L̂1(θ) and L̂−1(θ) is minimized. This gives

the best linear unbiased estimator (BLUE) (Kay, 1993, ch. 6)

of the expected loss. From here on, we use t ∈ [−1, 1] also as

a suffix to indicate target or non-target trial. Let the i-vector

pairs, Ω
(p)

h , of the training trials with label t be collected in a

vector �Ωt ∈ R2dNt . Further, let the weights for the correspond-

ing trials be collected in a vector βt ∈ RNt , and let Σt ∈ RNt×Nt

be the covariance matrix for the losses of these trials.2 Then,

2For simplicity, we do not consider the statistical dependencies between a

target trial and a non-target trial in this study.
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var
[
L̂t

(
θ, �Ωt

)]
is given by

E�Ωt |It

(
L̂t(θ, �Ωt) − E�Ωt |It

L̂t(θ, �Ωt)
)2

= E�Ωt |It

⎛⎜⎜⎜⎜⎜⎜⎝
∑

h:th=t

βhl
(
t, θ,Ω(p)

h

)
− EΩ(p) |tL (θ)

⎞⎟⎟⎟⎟⎟⎟⎠
2

= βT
t Σtβt, (25)

where It denotes any information about how �Ωt is generated

that affects Σt.

Previous studies have set βh to 1/N1 for the target trials and

1/N−1 for the non-target trials. From Eq. (25) it is clear that

when Σt is diagonal whose all elements are equal, this choice

of βh is optimal and results in the well-known formula for the

variance of the sample mean of IID variables. However, when

the trials are correlated, this choice of βh is not optimal. By us-

ing a Lagrange multiplier to enforce the constraint in Eq. (24) it

can be shown that, as long as Σt is non-singular,3 the minimizer

is given by,

βt =
Σ−1

t 1
1TΣ−1

t 1
, (26)

where 1 is a column-vector of length Nt whose all elements

equal 1.

According to Eq. (26), the optimal βt is not affected by a

scaling of the covariance matrices. Since all target/non-target

trial losses have the same variance, we therefore only need to

know the correlation between the trials. We denote the corre-

lation matrices Rt = Σt/vt, where v1 and v−1 are the variances

for the target and non-target trial losses respectively. These cor-

relation matrices have one entry per observation, In order to

estimate them, it is therefore necessary to impose a structure on

them so that they depend on a small number of parameters. In

Section 4, we propose how to do this for the correlations that

arise from using the same speakers and utterances in several

training trials.

It should be noticed that same results can be obtained by

regarding the trial losses lt(θ) = [l1(θ), . . . , lNt (θ)]
T as one mul-

tivariate observation following normal distribution with mean

η = [η, . . . , η]T and covariance matrix Σt and then using the

ML estimate of η as loss estimator, i.e.,

L̂t(θ) = arg max
η

1√
(2π)Nt |Σt |

exp

(
−1

2
(l(θ) − η)TΣ−1

t (l(θ) − η)
)

= lt(θ)T Σ
−1
t 1

1TΣ−1
t 1
. (27)

3.2. The effect of direct optimization of the PLDA LLR score
function

Scr-UC optimizes the parameters of LLR score, γ = [vec(P)T , vec(Q)T , cT , k]T ,

directly, whereas the DT scheme proposed in Borgström and

McCree (2013) optimizes the parameters of the PLDA model,

3A singular Σ would mean that the losses of two trials have correlation 1 or

that the variance of a trial loss is 0. These are not realistic scenarios.

m, V and D. The discriminative training objective in Eq. (18)

depends on the scores, sh, of the training trials. Since the scores

according to Eq (16) are given by a linear function of γ, di-

rect optimization of γ is most straight-forward. However, if

no constraints are imposed on γ, this may result in a model

with different properties than a PLDA model. The matrices P
and Q depends on the PLDA between-class covariance matrix,

VVT , and the within-class covariance matrix, DDT , according

to Eqs. (11) and (12). It is however not immediately appar-

ent what constraints that follows on γ. In this subsection, the

constraints on γ are presented, as well as an analysis of their

impact on the model. The discussion here is similar to the one

in Rohdin et al. (2014a).

The matrices, P and Q, are symmetric and have the same

rank as V (Garcia-Romero and Espy-Wilson, 2011). In addi-

tion, it can be shown based on Eq. (11) and (12), that the ma-

trices, P and Q, are constrained as follows:

1. P is positive-(semi)definite.

2. Q is negative-(semi)definite.

3. P + Q is positive-(semi)definite.

For these constraints, semi applies when the rank of V is smaller

than d. The proofs are given in AppendixA.

Scr-UC preserves the symmetry of P and Q but relaxes the

definiteness constraints. In the remainder of this subsection, the

effects of these constraints on the model are analyzed. In Sec-

tion 6, the impact of the constraints is evaluated experimentally.

The first constraint leads to a directional property. Consider

an i-vector, ω, scored against both αω and −αω, where α is a

positive constant. That is, in the first trial, ω is scored against

an i-vector pointing in same direction and, in the second trial it

is scored against an i-vectors pointing in the opposite direction.

Let s(ωi,ω j) = si j in Eq. (10). If the i-vectors are centered

around m, the difference between the scores of these two trials

is

s(ω, αω) − s(ω,−αω) = 4αωT Pω. (28)

In other words, the score of the same direction trial will be guar-

anteed to be larger than the score of the different direction trial

if and only if P is positive definite.

The second constraint leads to a length property:

s(ω,ω) > s(αω,
1

α
ω). (29)

This property means that two i-vectors of equal length and di-

rection will obtain a higher score than two i-vectors having just

equal direction.

From the first and the second constraint, it follows directly

that P−Q is positive-definite. Together with the third constraint,

this leads to the following properties:

s(ω,ω) > s(0, 0), (30)

s(ω,−ω) < s(0, 0). (31)

This means that any two i-vectors pointing in the same direction

obtain a higher score than any two i-vectors pointing in opposite

direction. These two properties are therefore a stronger version

of the directional property.
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Table 1: Different kinds of trial pairs and the notation of their correlation.

Capital letters refer to speakers and their indices refer to utterances. ‘Corr’ is

the notation of the correlation coefficient.

Set Things in common Trial pair example Corr.

T
ar

g
et 1 utt. (A1, A2) - (A1, A3) ca

Spk. (A1, A2) - (A3, A4) cb

Nothing (A1, A2) - (B1, B2) 0

N
o

n
-t

ar
g

et

1 utt., 1 spk. (A1, B1) - (A1, B2) c−a

2 spk. (A1, B1) - (A2, B2) c−b

1 utt. (A1, B1) - (A1,C1) c−c

1 spk. (A1, B1) - (A2,C1) c−d

Nothing (A1, B1) - (C1,D1) 0

4. Compensation for statistically dependent trials

In Subsection 3.1, we showed that using an equal weight

for all target trials and another equal weight for the non-target

trials is typically not optimal when the trials are statistically de-

pendent. We argued that it is preferable to adjust the weights of

the trials to obtain the BLUE for the loss estimator, L̂(θ), and

showed that in order to do this, we need to know the correlation

between the losses of the training trials. In this section, we pro-

pose practical methods for weight-adjustment of training trials

that are statistically dependent due to each speaker and utter-

ance being used in more than one trial.

4.1. Weight-adjustment formulas
Let capital letters denote different speakers in our training

data. Let NX be the number of utterances of speaker X, Xi be

the i-th utterance of this speaker, and l(Xi,Yj, θ) be the loss for

the trial involving utterance Xi and Yj. We would like to make

some assumptions about Σ1 and Σ−1 that allow us to calculate

the optimal weights βt by means of Eq. (26). Since the optimal

weight vector only depends on the correlation between the trial

losses, we can let the variances of the trial losses be functions

of θ. However, if the correlation coefficients depend on θ, the

optimal weights will also depend on θ. For simplicity, we there-

fore assume that the correlation coefficients do not depend on

θ, but only on what the trials have in common. For example, we

assume:

corr
(
l(A1, A2, θ), l(A1, A3, θ)

)
= ca, (32)

where the correlation coefficient, ca, is the same for all target

trial pairs that share one utterance. All the possible relations

between two trials as well as the notation for the correlation

coefficients are given in Table 1. Notice that two trials that have

nothing in common are statistically independent so that, e.g.,

corr (l(A1, A2, θ), l(B1, B2, θ)) = 0.

In this study, we use all the trials that can be constructed

from the training data except those where both the utterances

are the same. Under the assumptions given in the previous

paragraph, the optimal weight for each target trial of speaker

A is then given by (see AppendixB.1 for proof)

βA =
k1

1 + 2(NA − 2)ca + (NA − 2)(NA − 3)cb/2
, (33)

where k1 is set so that the sum of the weights equals 1. Since

we do not use target trials where both the utterances are the

same, a speaker with only one utterance is never used for tar-

get trials, i.e., NA = 1 is never used in the above formula. For

a speaker with two utterances, there is only one unique target

trial so the second and third term in the denominator will be 0.

For a speaker with three utterances, we can construct two trials

with one shared utterance but not two trials with no shared ut-

terances. In this case, the third term in the denominator will be

0. Notice that if all correlations equals 0, or if each speaker has

the same number of utterances, each trial will obtain the same

weight. If all correlations equal 1, each speaker will obtain the

same weight.

In order to derive the weights for the non-target trials, we

do some approximations. The approximately optimal weight

for each non-target trial of speaker A and B, is then

βAB ≈ k−1

WAB
(34)

where k−1 is set so that the sum of the weights equals 1 and,

WAB = 1 + c−a(NA + NB − 2)

+ c−b(NA − 1)(NB − 1)

+
(
2c−c + c−d(NA + NB − 2)

) ∑
I�A,B

NI . (35)

The derivation including the approximations is given in Ap-

pendixB.2.

4.2. Estimation of correlation coefficients
Ideally, we would have knowledge about ca, cb, c−a, c−b, c−c

and c−d. In this study we explore two ways to find their values.

The first is to approximate them with functions that depend on

one tunable parameter. The second is to estimate them based

on sample correlations in the training data.

4.2.1. Estimation by a one-parameter model
Consider first the target trials. We assume that two target

trials from the same speaker are correlated, and that two target

trials where one utterance is the same are more correlated, so

that 0 ≤ cb ≤ ca ≤ 1. In order to obtain only one parameter to

tune we set

ca = α1,

cb = α
2
1, (36)

where 0 ≤ α1 ≤ 1 will be tuned. The weights according this

formula for different values of α1, are given in Fig. 1. Notice

that, even for small values of α1, the number of utterances of a

speaker has large impact on the optimal weights for that speaker.

For the non-target trials, we can apply the same strategy,

i.e., assume that a shared speaker makes the trials correlated

and a shared utterance makes them more correlated. How-

ever, the relation between c−b and c−c is not clear. The former

gives the correlation between non-target trial losses where both

speakers are the same. The latter gives the correlation between

non-target trial losses that has one common utterance. While
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Figure 1: Optimal target trial weights for speaker A. ‘NA’ is the number of

utterances for the speaker and ‘βA’ is the weight according to Eqs. (33) and (36).

it is clear that having one common utterance should give larger

correlation than only having one common speaker, we cannot

guess the relation between one same utterance and two same
speakers. Therefore, we set

c−a = α−1, c−b = α
2
−1, c−c = α

2
−1, c−d = α

3
−1, (37)

with 0 ≤ α−1 ≤ 1. In this study, we will make a further sim-

plification and set, α1 = α−1, denoted α from here on. This

parameter will be tuned on a development set which to some

extent can compensate for inaccuracies introduced by our as-

sumptions and approximations.

4.2.2. Estimation by sample correlation
Let l̄1(θ) and v̄1(θ) be the sample mean and sample variance

of the loss of the target trials for the parameter θ. Given Na

target trial pairs with one utterance in common (see Table 1),

we calculate the sample correlation for those trials as

c̄a =
1

v̄1(θ)Na

Na∑
h=1

(
l
(
ω(h)

1
,ω(h)

2
, θ
) − l̄1(θ)

)

×
(
l
(
ω(h)

1
,ω(h)

3
, θ
) − l̄1(θ)

)
. (38)

The sample correlations for the other correlation coefficients are

calculated analogously. Compared to the one-parameter model,

this method makes fewer assumptions about the data. It relies

on the assumption that the correlation coefficients are indepen-

dent of θ and the same for each trial of the same kind (as de-

fined in Table 1). On the other hand, since the correlation co-

efficients are not tuned for performance, but to fit the data, this

method may be more sensitive for incorrect model assumptions.

For this method, we estimate the sample correlations based on

trial losses calculated with the corresponding DT model with-

out weight-adjustment.

5. Constrained discriminative PLDA training

In order to avoid overfitting, we would like to constrain the

PLDA model during DT. One way to do this is to apply L2 reg-

ularization. Finding the right regularization is however difficult.

Letting the regularization parameter be equal for all model pa-

rameters, as is typical, could be far from optimal. On the other

hand, tuning many different regularization parameters is com-

plicated. Similarly to Borgström and McCree (2013), we there-

fore propose several training schemes where a small number of

parameters estimated by DT are used to adjust the model esti-

mated by GT. This approach is in the spirit of AT-Cal but the

training schemes we propose are less constrained. Based on the

discussion in Subsection 3.2, we also propose a DT scheme that

preserves the properties of P and Q. The gradients for the train-

ing schemes we propose can be derived based on the gradients

for Scr-UC given in Cumani et al. (2011). These calculations

are efficient enough for using all possible combinations of the

training utterances as training data. The details of gradient cal-

culations as well as the initializations are given in AppendixC.

5.1. Reducing the number of parameters to be estimated

As an option with O(1) parameters, we propose to scale

each part of the PLDA LLR score function:

si j = aPω
T
i Pω j + aPω

T
j Pωi + aQω

T
i Qωi + aQω

T
j Qω j

+ac(ωi + ω j)
T c + akk, (39)

where aP, aQ, ac and ak are trained discriminatively. In other

words, we let the discriminative training adjust the weight of

each feature kind in the original model parameters. The def-

initeness properties P and Q given in Subsection 3.2 were, in

our experiments, almost always satisfied by itself (see Subsec-

tion 6.4), so we did not add any other constraints for this pur-

pose. We refer to this method as Scr-4par. It should be noted

that if aP = aQ = ac in Eq. (39), we obtain AT-Cal.

As an option with O(d) parameters, we propose to scale all

the elements of the i-vector. Either one scaling for each of P, Q
and c, or a common scaling can be used. In either case, we use

a scaling of k. Accordingly this gives 3d+1 or d+1 parameters

to be estimated. In this study, we use the latter and refer to it

as iV-elmnt. Another natural option with O(d) parameters is to

scale the eigenvalues of P and Q, but the advantage of iV-elmnt

is that we do not have to consider whether to preserve the PLDA

properties.

For generative ML training, letting rank(V) = r < d has

been reported to be beneficial (Matejka et al., 2011). As ex-

plained in Subsection 3.2, this reduces the rank of P and of Q
from d to r as well. Based on results in (Bishop, 2006, p. 577)

it follows that the number of parameters to be estimated will be

reduced from d2+2d+1 = O(d2) to r(2d−r)+d+r+1 = O(dr).

However, a large reduction of the number of parameters in this

way limits the model too much. As an extreme example, if we

want the same number of parameters as iV-elmnt, we have to

set r = 1, which means that the i-vectors are projected into a

one-dimensional space.
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5.2. Preserve the properties of P and Q
As the least constrained option, we propose to just preserve

the definiteness constraints of P and Q. In this case the number

of parameters to be estimated is not reduced, but the values they

can take are limited. In this subsection, we propose reparame-

terizations of of P and Q such that when these parameters are

optimized instead of P and Q, the definiteness constraints will

be preserved.

The matrix P is positive-semidefinite if

P = PA PT
A , (40)

where PA is a d × r matrix with real elements. Accordingly,

in order to keep P positive-semidefinite, we train PA instead of

P. The rank of P is equal to r and can therefore be selected by

selecting the number of columns in PA. If we wish to control the

rank without keeping P positive definite, we can use P = PA PB

where PB � PT
A .

In order to keep Q negative-semidefinite, we set

Q = −QAQT
A , (41)

and train QA instead of Q.

In order to enforce the third constraint, we set

P + Q = RART
A , (42)

instead of P = PA PT
A , and as before

Q = −QAQT
A . (43)

We then optimize RA and QA. In this study, we apply the three

definiteness constraints without reducing the rank. We refer to

this method as Scr-Def.

5.3. Regularization
For the DT schemes with many parameters, we also apply

L2 regularization in order to prevent overfitting, i.e., we add the

term ρ‖θ − θ̃‖2 to the training objective in Eq. (21), where ‖·‖
denotes the Euclidean norm and the regularization parameter, ρ,
is tuned on a development set. This forces the parameter vector,

θ, to be close to θ̃. For Scr-UC and Scr-Def, we use either 0
or the model from GT. For Scr-Def, we use regularization in

terms of P and Q rather than RA and QA. For example, the

contribution to the regularization term from Q is

ρ‖vec(Q − Q̃)‖2 = ρ‖vec(−QAQT
A − Q̃)‖2, (44)

rather than ρ‖vec(QA − Q̃A)‖2, where Q̃ and Q̃A denotes either 0
or the parameters obtained by GT.

The optimal ρ depends on the size of the training data. In-

stead of tuning ρ for each training data size, we use a modified

training objective given by

L̂′(θ) = κL̂(θ) + ρ‖θ − θ̃‖2 (45)

where κ = N1+N−1. We then tune ρ for the full training data and

use this value also for smaller amounts of training data. This

means that the influence of the regularization becomes larger

for the smaller training data.

6. Experiments

6.1. Outline
We first evaluated the weight-adjustment proposed in Sec-

tion 4 applied to AT-cal. We then compared the constrained DT

schemes proposed in Section 5 with the two baselines, AT-Cal

and Scr-UC. Finally, we compared the combination of weight-

adjustment and the best constrained DT scheme with the best

baseline for various training data sizes.

We mainly focused on the logarithmic cost function (Ĉllr)

introduced in Brümmer and du Preez (2006) as evaluation met-

ric. In addition, we report results on several other standard eval-

uation metrics, namely equal error rate (EER), actual and min-
imum detection costs (actDCF, minDCF) for the effective prior

used in the NIST SRE 2008 and the NIST SRE 2010 (NIST,

2008, 2010), as well as minimum Ĉllr (Ĉmin
llr

). Notice that EER,

minDCF and Ĉmin
llr

are calibration-insensitive evaluation met-

rics, i.e., they are not affected by monotonic transformations of

the scores such as the affine transformation employed by AT-

Cal.

In the next subsection, the details of the experimental set-up

are given. In Subsection 6.3, the experimental results are given.

Finally, an analysis of the results is given in Subsection 6.4.

6.2. Experimental set-up
We conducted experiments on the male part of three sets,

the NIST SRE 2006 core task (SRE06), NIST SRE 2008 core

task condition-6 (SRE08) and NIST SRE 2010 core task condition-

5 extended (SRE10). We used SRE06 as the development set

for tuning the regularization parameter, ρ, and for the weight-

adjustment parameter, α. For some experiments (see subsec-

tion 6.3.1), we also used SRE06 for calibration. SRE08 and

SRE10 were used as the evaluation sets. A few trials in SRE06

and SRE08 were excluded because of their inconsistent meta-

data. The number of trials were 22123, 12356 and 179338 for

SRE06, SRE08 and SRE10 respectively. It should be noted

that SRE08 could be too small to give a reliable estimate of

actDCF10. The evaluation metrics were calculated with the

BOSARIS toolkit (Brümmer and de Villiers, 2011) which uses

the PAV algorithm for calculating the minimum version of the

evaluation metrics.

For training the UBM and the T matrix, we used NIST SRE

2004 (SRE04), NIST SRE 2005 (SRE05), Switchboard II Phase

1 (SB2P1), Switchboard II Phase 2 (SB2P2), Switchboard II

Phase 3 (SB2P3), Switchboard Cellular Part 1 (SBCP1) and

Switchboard Cellular Part 2 (SBCP2). For SRE04, we used

speech files included in the training lists of one, three, eight

and sixteen single-channel conversation sides and in the test

list of one single-channel conversation side. For SRE05, we

used speech files included in the training lists of one, three and

eight two-channel conversation sides and in the test list of one

single-channel conversation side. For the Switchboard datasets,

we used all non-empty speech files.

For training PLDA models, we used the same data except

SB2P1. In addition, from the Switchboard data, we excluded

speech distorted by echo or crosstalk or background noise ac-

cording to the meta-data in the databases. MIXER PIN and PIN
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were used as unique speaker IDs for NIST SRE and Switch-

board datasets respectively. For the files whose MIXER PIN

were missing, we used model IDs as speaker IDs. This gave

1153 speakers with in total 9152 utterances.

We used 15 PLP coefficients (Hermansky, 1990) along with

log-energy and applied feature warping (Pelecanos and Sridha-

ran, 2001). After that, we appended the first-order and second-

order derivatives, resulting in 48 elements per frame. Non-

speech parts were then removed by using a spectral subtraction-

based voice activity detector (Mak and Yu, 2010). Our UBM

had 2048 Gaussian components and d, i.e., the rank of T, was

set to 400. The i-vectors went through the process of center-

ing, whitening, and length-normalization (Garcia-Romero and

Espy-Wilson, 2011).

Generative PLDA training was performed with the EM al-

gorithm (Brümmer, 2010). The number of columns of V was

set to d. For the discriminative training methods, we used the

L-BGFS (Liu and Nocedal, 1989) implementation in Schmidt

(2012). We used its default stopping criteria and in addition,

we stopped the training if no change in minDCF08 had been

observed on the development set for 20 iterations. As in Bur-

get et al. (2011) and Cumani et al. (2011), we used all the trials

that could be constructed from the training data, except that we

excluded target trials where an utterance is scored against it-

self. The number of unique target trials in the training data was

52,709 and the number of unique non-target trials was 41,822,267.

We used the effective prior of SRE08, Peff = 0.0917, to bal-

ance target and non-target trials and for setting τ. The weight-

adjustment parameter, α, was optimized over the steps 0, 0.1, . . . , 1.0.

Sample correlations were estimated based on the losses of 106

trial pairs of each kind (sampled with replacement). The regu-

larization parameter, ρ, was optimized over the steps 10−3, 10−2, . . . , 104.

6.3. Results
6.3.1. Weight-adjustment for AT-Cal

For the initial exploration, we first evaluated the weight-

adjustment with the one-parameter model for AT-Cal. We trained

a PLDA model with the training data described in Subsection

6.2, and used data from the test set of SRE06 for calibration.

We selected the calibration data in a way that the effect of the

weight-adjustment should be easily observed, i.e., few speakers

with large variation in their number of utterances. Specifically,

we randomly selected 11, 14 or 21 speakers, and then for each

of them, we randomly selected their number of utterances uni-

formly in the interval 1 to the number of available utterances

(between 1 and 36, around 6 on average). Notice that this

choice of calibration data was for demonstrating the effect of

weight-adjustment. It is generally better to use all the available

data. The actDCFs and Ĉllr for the α that was the optimal on

the development set, as well as α = 0 which gives the standard

equal weight to each trial, are shown in Table 2. For reference,

the result in the calibration-insensitive evaluation metrics are

given in Table 4. In Figure 2, Ĉllr vs. α is shown. We ob-

served a large improvement in Ĉllr for 11 calibration speakers.

The optimal α on the development set was 0.5 but any value in

between 0.1 and 0.6 gave similar results. For 14 and 21 speak-

ers, the improvements were marginal. A general rule for the

Table 2: Calibration results using SRE06 as calibration data. α = 0 is the

standard approach with equal weight to each trial. A ‘*’ indicates that this

value was optimal for Ĉllr on the development set.

Set #Spkr actDCF08 actDCF10 Ĉllr α

SRE08

11
0.0270 0.01525 3.660 0

0.0271 0.01500 2.440 *0.5

14
0.0343 0.00688 0.256 0

0.0334 0.00552 0.245 *0.1

21
0.0316 0.00266 0.215 0

0.0291 0.00281 0.211 *1.0

SRE10

11
0.0113 0.001556 2.124 0

0.0110 0.001518 1.363 *0.5

14
0.0104 0.000468 0.087 0

0.0104 0.000413 0.085 *0.1

21
0.0103 0.000462 0.087 0

0.0102 0.000452 0.082 *1.0

Figure 2: Ĉllr vs. the weight-adjustment parameter α. The lines without circles

denote Ĉmin
llr

. Lines with circles denote Ĉllr for 11 (upper), 14 (middle) and 21

(lower) calibration speakers, respectively.

optimal value of α is therefore not possible to infer from this

experiment.

The differences in actDCF08 were insignificant in most cases.

Both actDCF08 and actDCF10 consider a small value of Peff

(0.0917 and 0.0010 respectively). Ĉllr on the other hand, con-

siders all values of Peff (Brümmer and du Preez, 2006). For

the training sets with 11, 14 and 21 speakers, the proportion

of target-trials were 0.0774, 0.0736 and 0.0583 respectively.

These values are close to Peff of actDCF08. The expected loss is

therefore likely to be better estimated for this value of Peff than

others, so that the benefit of an improved estimation procedure

becomes smaller.

In the above experiment we used additional data for the cali-

bration. Results using only the original training data for weight-

adjustment both based on the one-parameter model and based

on sample correlations are shown in Table 3. We considered the

following training conditions:

1. Use the data from 90% of the training speakers for model
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Table 3: Calibration results for three training/calibration conditions. The

conditions are described in Subsubsection 6.3.1. ‘W.-adj’ refers to weight-

adjustment, ‘sp.’ to sample correlation, and ‘α’ refers to the one-parameter

model, tuned for Ĉllr on the development set.

Set Cond. actDCF08 actDCF10 Ĉllr W.-adj.

S
R

E
0

8

1
0.0267 0.00151 0.286 no

0.0278 0.00146 0.268 α = 0.2
2,3 0.0256 0.00130 0.201 no

2 0.0251 0.00130 0.199 sp.

2 0.0253 0.00131 0.197 α = 1.0
3 0.0251 0.00130 0.196 α = 1.0

S
R

E
1

0

1
0.0178 0.000623 0.168 no

0.0182 0.000658 0.158 α = 0.2
2,3 0.0143 0.000678 0.100 no

2 0.0141 0.000678 0.098 sp.

2 0.0141 0.000688 0.098 α = 1.0
3 0.0135 0.000678 0.095 α = 1.0

training, and the data from the remaining training speak-

ers for calibration.

2. Use all training data both for model training and for cali-

bration.

3. As Condition 2, but in addition preserve the balance be-

tween the NIST SRE and the Switchboard corpora when

weight-adjustment is utilized.

Condition 3 was motivated by the fact that the data is made-

up by several different corpora and as a side-effect of weight-

adjustment, the balance between these corpora may change.

In fact, the Switchboard corpora has much fewer utterances

per speaker than the NIST SRE corpora. Since the weight-

adjustment increases the weights for speakers with fewer trials,

the weight for Switchboard is increased. Again, we confirmed

that the weight-adjustment is effective, although the effect was

smaller than in our previous experiment. We did not see any

significant difference between weight-adjustment based on the

one-parameter model and weight-adjustment based on sample

correlations. It was overall better to use all data both in model

training and in calibration, than to split the data. Using calibra-

tion trials from i-vectors that have been used in PLDA training

is not ideal since it does not resemble the test situation where

the trials are from new i-vectors, while in our experiments, the

benefit of having more data for training outweighed this prob-

lem. Preserving the balance between NIST SRE and Switch-

board was useful, in which case we obtained an relative im-

provement in Ĉllr of 5% by weight-adjustment on SRE10.

6.3.2. Comparison of DT schemes
Next, we evaluated the different discriminative PLDA train-

ing schemes without weight-adjustment. Since in the previous

experiment, using all training data both for the GT step and the

DT step was better in almost all cases, we continued to use this

approach. The results are shown in Table 5. If we ignore the

methods for which regularization towards the GT model was

Table 4: Results of GT in the calibration insensitive evaluation metrics.

‘%Spkr’ is the percentage of the training speakers used for model training. ‘m.’

refers to minimum.

Set % Spkr m.DCF08 m.DCF10 Ĉmin
llr

EER

SRE 100 0.0250 0.000728 0.175 0.0480

08 90 0.0254 0.000713 0.176 0.0497

SRE 100 0.0101 0.000385 0.079 0.0198

10 90 0.0103 0.000403 0.081 0.0201

applied, there is a clear pattern in Table 5. Overall, one of the

baselines, AT-Cal, performed best for SRE08 and Scr-4par per-

formed best for SRE10, where the relative improvement over

AT-Cal was 14%. The less constrained iV-elmnt performed

worse than these two methods but better than Scr-UC which

has no constraints except regularization.

For Scr-Def and Scr-UC, we had to apply regularization in

order to avoid overfitting. The regularization parameter, ρ was

chosen to minimize Ĉllr on the development set, SRE06. In

terms of Ĉllr, these two methods performed worse than AT-Cal

and Scr-4par. Applying regularization towards the GT model,

gives mixed results. Both SCR-Def and SCR-UC performed

well in actDCF08 but they did not perform well in actDCF10

and Ĉllr. This indicates that these systems are only good for the

effective prior that has been specified in the training objective.

The bad performance for the other effective priors is, however,

surprising since the logistic regression loss function emphasizes

on a broad range of effective priors (Brümmer and du Preez,

2006). Moreover, the optimal ρwas quite large and the effect on

minDCF08 was minor. It should also be noted that the optimal ρ
varies depending on which evaluation metric is considered. In

particular, this was a problem for Scr-Def with regularization

towards 0 so we did not include that result in the table. The

problem of this method method might be because its objective

function is non-convex.

All the results taken into account, AT-cal and Scr-4par seems

to be the best methods for this amount of training data or smaller.

6.3.3. Weight-adjustment for Scr-4par and Scr-UC
We have already confirmed that the weight-adjustment im-

proves the performance of At-Cal. In this experiment we ex-

plore the effect of weight-adjustment on Scr-4par and Scr-UC

with regularization towards 0. The former is important because

this DT scheme performed the best on SRE10. The latter is in-

teresting since it is the least constrained scheme that does not

use the model obtained by GT in any way. For Scr-UC with

weight-adjustment, we used the same regularization as for Scr-

UC without weight-adjustment (which was tuned on the devel-

opment set). The results are given in Table 6. For Scr-4par with

the one-parameter model, we did not obtain any improvement

in Ĉllr on the development set. Therefore, only the α = 0 is in-

cluded. The effect of weight-adjustment based on sample corre-

lations were small. For Scr-UC the effect of weight-adjustment

was larger in particular actDCF08 where we observed improve-

ments of around 5% and 8% for SRE08 and SRE10 respec-

tively. The difference between the weight-adjustment based on
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Table 5: Discriminative training results. ‘Reg. to GT’ and ‘Reg. to 0’ mean L2 regularization towards the model obtained by GT and regularization towards 0,

respectively. The regularization parameter, ρ, was tuned to optimize for Ĉllr on the development set.

Set Method actDCF08 minDCF08 actDCF10 minDCF10 EER Ĉllr Ĉmin
llr

ρ

SRE08

AT-Cal 0.0256 0.0250 0.00130 0.000728 0.0480 0.201 0.175 -

Scr-4par 0.0274 0.0254 0.00257 0.000802 0.0471 0.202 0.177 -

iV-elmnt 0.0269 0.0262 0.00171 0.000669 0.0478 0.225 0.182 -

Scr-Def. Reg. to GT 0.0269 0.0253 0.01278 0.000809 0.0461 1.415 0.178 102

Scr-UC. Reg. to GT 0.0268 0.0253 0.01269 0.000809 0.0459 1.416 0.178 102

Scr-UC. Reg. to 0 0.0334 0.0304 0.000876 0.000743 0.0564 0.235 0.212 101

SRE10

AT-Cal 0.0143 0.0101 0.000678 0.000385 0.0198 0.100 0.0788 -

Scr-4par 0.0117 0.0100 0.000574 0.000375 0.0188 0.086 0.0744 -

iV-elmnt 0.0146 0.0121 0.000563 0.000412 0.0253 0.119 0.0962 -

Scr-Def. Reg. to GT 0.0110 0.0103 0.001523 0.000377 0.0204 0.663 0.0805 102

Scr-UC. Reg. to GT 0.0111 0.0103 0.001495 0.000380 0.0203 0.664 0.0801 102

Scr-UC. Reg. to 0 0.0304 0.0183 0.000916 0.000598 0.0370 0.180 0.1368 101

the one-parameter model and the weight-adjustment based one

sample correlations were as in previous experiments small. In

general, the minimum costs are much less effected by weight-

adjustment than the actual costs. It should be noticed that the

training objective aims at reducing actual costs. The minimum

costs are only indirectly affected since they cannot be higher

than the actual costs.

6.3.4. Different training data sizes
In the final experiment, we evaluated AT-Cal, Scr-4par and

SCR-UC for smaller numbers of training speakers, with and

without weight-adjustment. For simplicity, we did not preserve

the balance between the NIST SRE and the Switchboard cor-

pora. The same training data was used both in the GT step and

the DT step. Since previous experiments showed very small dif-

ferences between weight-adjustment based on the one-parameter

model based on sample correlations, we use only the former

in this experiment. In Table 7 the results using half of the

training speakers are shown. Scr-UC benefited mostly from

weight-adjustment where actDCF08 improved around 10% for

both SRE08 and SRE10, and Ĉllr improved around 6% for both

SRE08 and SRE10.

In Fig. 3, Ĉllr vs. the number of training speakers is shown

for SRE10. It is clear that Scr-4par gave better results than AT-

cal and that the weight-adjustment in most cases improved the

performance of both methods. The relative improvements of

Scr-4par with weight-adjustment compared to the baseline, AT-

Cal without weight-adjustment, ranged from 7% to 19% for the

different training sizes. It is interesting that the gap between

the two methods became larger when the amount of training

data increased. This is reasonable since more training data is

needed in order to take advantage of the extra flexibility of Scr-

4par. However, in accordance with the experiment in Subsub-

section 6.3.2, AT-Cal was better on SRE08 in most cases. As in

the experiments with AT-Cal in Subsubsection 6.3.1, the effect

of weight-adjustment disappears when the number of training

speakers became large. For other evaluation metrics than Ĉllr,

the trend was less clear.
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Figure 3: Ĉllr for SRE10 vs. the percentage of training speakers. 100% equals

1152 speakers. The weight-adjustment parameter, α, was chosen to be optimal

for the development set for each training-size.

6.4. Analysis

In this subsection, we analyze some of the results more in

detail. In particular, we investigate how accurate the assump-

tions leading to the weight-adjustment formulas in Eqs. (33) and (35)

are, and whether the definiteness properties of P and Q dis-

cussed in Subsection 3.2 are important.

The weight-adjustment did not always work well. For ex-

ample, when all training data was used for Scr-4par, the op-

timal value of α on the development set was 0, which corre-

sponds to not using any weight-adjustment. The fact that the

weight-adjustment did not always work may indicate that the

assumptions behind it are not accurate enough. Let us recall the

assumptions. First, we assumed that the correlation between the

losses of two trials does not depend on the model parameters,

θ, but only on what the trials have in common, e.g., one utter-

ance might be the same in both trials. For the one-parameter

model, we further assumed that all correlations are given by

a parameter α which was tuned on the development set. The
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Table 6: Results for Scr-4par and Scr-UC with and without weight-adjustment. The weight-adjustment parameter, α was tuned to optimize Ĉllr on the development

set. ‘Reg. to 0’ means L2 regularization towards 0.

Set Method actDCF08 minDCF08 actDCF10 minDCF10 EER Ĉllr Ĉmin
llr

Weight-adj

SRE08

Scr-4par

0.0274 0.0254 0.00257 0.000802 0.0471 0.202 0.177 no, α = 0

0.0276 0.0254 0.00256 0.000804 0.0476 0.204 0.178 Sample corr.

Scr-UC. Reg. to 0
0.0334 0.0304 0.000876 0.000743 0.0564 0.235 0.212 no

0.0317 0.0302 0.000851 0.000739 0.0570 0.231 0.213 α = 0.2
0.0314 0.0300 0.000851 0.000740 0.0572 0.231 0.213 Sample corr.

SRE10

Scr-4par

0.0117 0.0100 0.000574 0.000375 0.0188 0.086 0.0744 no, α = 0

0.0116 0.0099 0.000569 0.000375 0.0188 0.085 0.0742 Sample corr.

Scr-UC. Reg. to 0
0.0304 0.0183 0.000916 0.000598 0.0370 0.180 0.137 no

0.0278 0.0182 0.000888 0.000612 0.0369 0.173 0.137 α = 0.2
0.0275 0.0183 0.000888 0.000616 0.0368 0.173 0.138 Sample corr.

Table 7: Result for three DT schemes, with and without weight-adjustment, using half of the training speakers. The weight-adjustment parameter, α was tuned to

optimize Ĉllr on the development set. ‘Reg. to 0’ means L2 regularization towards 0.

Set Method actDCF08 minDCF08 actDCF10 minDCF10 EER Ĉllr Ĉmin
llr

Weight-adj

SRE08

AT-Cal
0.0281 0.0263 0.00092 0.000793 0.0523 0.201 0.187 no

0.0286 0.0263 0.00115 0.000793 0.0523 0.202 0.187 α = 0.2

Scr-4par
0.0322 0.0274 0.00177 0.000921 0.0515 0.220 0.190 no

0.0319 0.0273 0.00217 0.000910 0.0519 0.219 0.189 α = 0.3

Scr-UC. Reg. to 0 0.0591 0.0340 0.001000 0.000790 0.0724 0.349 0.248 no

0.0533 0.0329 0.000997 0.000819 0.0722 0.328 0.247 α = 0.4

SRE10

AT-Cal
0.0127 0.0111 0.000743 0.000396 0.0229 0.101 0.090 no

0.0125 0.0111 0.000705 0.000396 0.0229 0.099 0.090 α = 0.2

Scr-4par
0.0116 0.0106 0.000657 0.000394 0.0217 0.0950 0.0848 no

0.0114 0.0106 0.000607 0.000392 0.0219 0.0934 0.0850 α = 0.3

Scr-UC. Reg. to 0 0.0646 0.0239 0.001000 0.000695 0.0479 0.327 0.176 no

0.0593 0.0238 0.001000 0.000737 0.0479 0.302 0.176 α = 0.4

Table 8: Estimated correlations for AT-Cal, Scr-4par and Scr-UC. ‘c0’ and

‘c−0’ are the estimated correlations for trials that have nothing in common, and

accordingly should be 0.

Set Corr. AT-Cal Scr-4par. Scr-UC

T
ar

g
et ca 0.378 0.377 0.364

cb 0.040 0.036 0.108

c0 4.79 × 10−4 4.83 × 10−4 2.15 × 10−4

N
o

n
-t

ar
g

et

c−a 0.768 0.856 0.770

c−b 0.534 0.623 0.507

c−c 0.010 0.003 0.006

c−d 7.75 × 10−4 2.92 × 10−4 9.31 × 10−4

c−0 −3.15 × 10−4 −1.97 × 10−4 3.20 × 10−4

estimated sample correlations are shown in Table 8. We can

see that there is a clear correlation between trials involving the

same utterance or speaker. Moreover, the results for the three

models are quite similar, which suggests the dependence on θ
may not be large. However, our assumptions about how the cor-

relations depends on α are not that accurate. In particular, it is

noticeable that using the same two speakers in both trials causes

much more correlation than using only one same utterance, i.e.,

that c−b � c−c.

As already revealed, for Scr-4par, the definiteness constraints

on P and Q were almost always preserved by itself. P was al-

ways kept positive definite and Q was always kept negative def-

inite. Out of the 8 training sizes, it happened once that the ma-

trix P+Q was not positive definite, but in this case, only one of

its eigenvalues were negative. We did not see any difference in

performance between SCR-Def and Scr-UC but an inspection

of the eigenvalues reveals that the definiteness constraints were

never fulfilled for Scr-UC, regardless of whether regularization

was applied towards the model obtained by GT, or towards 0.

However, we also investigated whether ωT Pω > 0, ωT Qω < 0

and ωT (P+Q)ω > 0 for each i-vector, ω, in the PLDA training

set and in the development set, SRE06. When regularization to-

wards the GT model was applied, the number of violations was

very few. This means that the constraints are, in some sense,

practically fulfilled for i-vectors that are normally observed.

This may be because the DT model remains close to the GT

model and therefore keeps its properties. Interestingly though,

when regularization towards 0 was applied, there were many

violations against the second constraint, ωT Qω < 0, but no

violations against the other two constraints. Recall from Sec-

tion 3.2 that the second constraint is related to a length property

of the model, which is unlikely to be useful when the i-vectors

are length-normalized. While this supports our analysis in Sec-
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tion 3.2, it also shows that, at least for the training sizes used in

our experiment, the training procedure tends to learn the useful

properties from the data.

7. Conclusions and future work

We dealt with two issues in order to improve the robust-

ness of discriminative training (DT) against data insufficiency

in PLDA based speaker verification. First, we examined how to

appropriately use statistically dependent training trials by ad-

justing the weights of the trials in the training objective. Sec-

ond, we proposed three new DT schemes and systematically

compared them with two existing training schemes, namely gen-

erative training (GT) followed by score calibration by means of

a discriminatively trained affine transformation, and, DT of all

the parameters of the PLDA score function. We evaluated the

methods on the male telephone part of the NIST SRE 08 and

the NIST SRE10. We confirmed the effectiveness of weight-

adjustment when the number of training speakers were few or

when DT was only weakly constrained. On SRE08, GT fol-

lowed by score calibration performed better than any of the

proposed DT schemes. However, on SRE10 one of our DT

schemes was better. In combination with weight-adjustment it

gave improvements in between 7% and 19% in Ĉllr depending

on the training data size, compared to GT followed by score cal-

ibration, which in turn was better than DT of all the parameters

of the PLDA score function.

Future directions are many. There are other phenomena

that may cause the training trials to be statistically dependent

than common utterances or speakers. For example, when the

same microphone is used in more than one training utterance.

It would be interesting to apply the weight-adjustment to deal

with such dependencies. Although using the best linear unbi-

ased estimator for the expected loss is well motivated and works

well, is possible that the results could be improved by some

other estimator than the BLUE. For example, a non-linear es-

timator or an estimator that considers higher moments than the

variance. Another issue for future consideration is that there

might be a mismatch between the properties of the training tri-

als and the properties of the test trials. Several studies in domain

adaptation have shown that the Switchboard and the NIST SRE

corpora have different properties (Garcia-Romero and McCree,

2014; Biswas et al., 2015). Furthermore, the target trials in the

test sets of the NIST SRE are always from different telephone

numbers whereas the majority of the target trials used for DT

are from the same telephone number.
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AppendixA. Constraints on the PLDA LLR score function

In this section, we derive the constraints on P and Q men-

tioned in Subsection 3.2. In this paper, we use the term defi-
nite only for symmetric matrices. We use the term semidefinite
when at least one eigenvalue of the matrix is zero, i.e., it does

not have full rank, and the term nonnegative-definite for matri-

ces which are either positive-definite or positive-semidefinite.

AppendixA.1. Rank of P and Q
In this subsection, we show that both the rank of P and the

rank of Q is equal to the rank of V.

Let S = Σtot − ΣacΣ
−1
totΣac. Then,

rank(P) = rank(Σ−1
totΣacS−1) ≤ rank(Σac), (A.1)

rank(Σac) = rank(Σtot PS) ≤ rank(P). (A.2)

Hence, rank(P) = rank(Σac) = rank(V).

Using that S is positive definite (Boyd and Vandenberghe,

2004, Ch. A.5.5) and the Woodbury identity (Petersen and Ped-

ersen, 2012, Eq. (156)) we obtain

Q = −Σ−1
totΣacS−1ΣacΣ

−1
tot

= −Σ−1
totΣacS−1/2(Σ−1

totΣacS−1/2)T , (A.3)

where S−1/2 is the square root of S−1. Set M = Σ−1
totΣacS−1/2.

Then,

rank(Q) = rank(M) ≤ rank(Σac), (A.4)

rank(Σac) = rank(Σtot MS1/2) ≤ rank(M). (A.5)

Hence, rank(Q) = rank(Σac) = rank(V).

AppendixA.2. Definiteness of P and Q
In this subsection, we derive the following constraints on P

and Q:

1. Q is negative-(semi)definite.

2. P is positive-(semi)definite.

3. P + Q is positive-(semi)definite.

For these constraints, semi applies when rank(V) < d. Con-

straint 1 follows directly from Eq. (A.3) and the fact that rank(Q) = rank(V
If SPS is positive-(semi)definite, then S−1SPSS−1 = P is posi-

tive (semi)definite (Harville, 1997, Thm. 14.2.9). A bit of pro-

cessing of SPS gives

SPS = Σac − ΣacΣ
−1
totΣac + ΣacΣ

−1
totΣwcΣ

−1
totΣac, (A.6)

where Σwc = Σtot − Σac. From Eq. (A.6) it is clear that P is

symmetric. The last term in Eq. (A.6) is nonnegative-definite.

The term Z = Σac − ΣacΣ
−1
totΣac is a Schur complement of Σtot in

M =
[
Σtot Σac

Σac Σac

]
. (A.7)

Z is positive-(semi)definite if M is positive-(semi)definite (Boyd

and Vandenberghe, 2004, Ch. A.5.5). By expanding [xT
1 xT

2 ]M[xT
1 xT

2 ]T

for two real vectors, x1 and x2, it can be verified that M is pos-

itive definite if rank(Σac) = d, otherwise positive-semidefinite.
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Since, SPS, is a sum of nonnegative-definite matrices, it is non-

negative definite. Since rank(P) = rank(V), Constraint 2 fol-

lows.

P + Q can be rewritten as

P + Q = Σ−1
totΣacS−1(I − ΣacΣ

−1
tot )

= S−1ΣacΣ
−1
tot (I − ΣacΣ

−1
tot ) (A.8)

= S−1(Σac − ΣacΣ
−1
totΣac)Σ−1

tot , (A.9)

where (A.8) comes from the symmetry of P = Σ−1
totΣacS−1. If

S1/2(P + Q)S1/2 is positive (semi)definite, then S−1/2S1/2(P +
Q)S1/2S−1/2 = P + Q is positive (semi)definite. Since this ma-

trix is symmetric, it is enough to show that its eigenvalues are

larger than, or equal to zero. For two matrices, A and B, the

eigenvalues of AB and BA are the same (Harville, 1997, Thm.

21.10.1). Therefore, the eigenvalues of S1/2(P + Q)S1/2 are the

same as for

S(P + Q) = (Σac − ΣacΣ
−1
totΣac)Σ−1/2

tot Σ
−1/2
tot , (A.10)

whose eigenvalues in turn are the same as for

Σ
−1/2
tot (Σac − ΣacΣ

−1
totΣac)Σ−1/2

tot . (A.11)

The middle part is, as pointed out earlier, positive-definite if

rank(V) = d, otherwise positive-semidefinite. Accordingly,

Constraint 3 follows.

AppendixB. Derivation of formulas for weight-adjustment

In this section, we derive the formulas for the trial weights

given in Eqs. (33) and (35).

AppendixB.1. Optimal weights for the target trials
From Eq. (26) we have

Σ1β = 1/(1TΣ−1
1 (θ)1). (B.1)

Consider the loss of one specific target trial of speaker A, l(A1, A2),

and its covariance with the loss of all other target trials. Let

Σ
(A1,A2)
1

be the row in Σ1, containing these covariances. Let the

variance of the target trial losses be denoted v1(θ). The covari-

ances with the losses of the target trials from the other speakers

are 0. The covariances with the losses of the other target trials

of speaker A are either v1(θ)ca or v1(θ)cb. Let the number of

such trials be denoted na and nb respectively. Assume that the

weights for all target trials of speaker A are the same, βA, then

Σ
(A1,A2)
1

β = (1 + naca + nbcb)v1(θ)βA. (B.2)

Notice that the elements in β which are weights for another

speaker than speaker A are always multiplied with elements in

Σ
(A1,A2)
1

that are 0, and therefore they are not present on the right

hand side of Eq. (B.2). Setting Eq. (B.2) equal to the corre-

sponding row in Eq. (B.1) gives

(1 + naca + nbcb)βA = 1/
(
v1(θ)1TΣ−1

1 (θ)1
)

= 1/(1T R−1
1 1)

= k1, (B.3)

where R1 = Σ1(θ)/v1(θ) is the correlation matrix which, ac-

cording to our assumptions, does not depend on θ. Since we

are using all possible target trials, the rows in Σ1 corresponding

to the other target trials of speaker A contains the same elements

as Σ
(A1,A2)
1

but with a different order. These rows therefore also

results in Eq. (B.3). Thus, an equal weight for all target trials

of the same speaker gives a solution to Eq. (26) and since Σt is

invertible, it is the only solution.

It remains to find na and nb. There are NA(NA − 1)/2 − 1

unique target trials of speaker A, excluding the trial (A1, A2). na

is the number of trials that include either A1 or A2 but not both,

in total na = 2(NA − 2) trials. nb is the remaining target trials of

speaker A, except (A1, A2), in total

nb = NA(NA − 1)/2 − 2(NA − 2) − 1

= (NA − 2)(NA − 3)/2. (B.4)

AppendixB.2. Approximately optimal weights for the non-target
trials

Consider the loss of one specific trial, l(A1, B1) and its co-

variance with the loss of other non-target trials. We use a sim-

ilar approach as for the target trials. However, the non-target

trials where one speaker is different from A and B will com-

plicate matters. The number of non-target trials involving the

same speakers, A and B, where one utterance is either, A1 or

B1, is n−a = NA + NB − 2. The number of non-target trials in-

volving the same speakers but not the utterance A1 or B1, are

n−b = (NA − 1)(NB − 1). Now, assume that each non-target trial

involving speaker A and B has same weight, βAB, and similarly

for the other speaker pairs. (It can be verified that this gives a

solution.) Then from Eq. (26), we have

1/(1T R−1
(−1)1) = (1 + n−ac−a + n−bc−b)βAB

+ c−c

∑
X�A,B

(βAX + βBX)NX

+ c−d

∑
X�A,B

((NA − 1)βAX + (NB − 1)βBX) NX , (B.5)

where R−1 = Σ−1/v−1(θ) is the correlation matrix and v−1(θ)
is the variance for the non-target trial losses. The number of

unknown variables in this equation is equal to the number of

speaker pairs and we have one such equation per speaker pair.

The number of speaker pairs is, however, very large. Instead of

solving this system of equations, we use the approximations:∑
X�A,B

(βAX + βBX)NX ≈ 2
∑

X�A,B

βABNX , (B.6)

and ∑
X�A,B

((NA − 1)βAX + (NB − 1)βBX) NX

≈
∑

X�A,B

((NA + NB − 2)βAB) NX . (B.7)

These approximations are quite reasonable since, e.g., a larger

NA results in a smaller values of both βAB and βAX . This results

in

(1 + n−ac−a + n−bc−b + n−cc−c + n−dc−d)βAB ≈ k−1, (B.8)
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where,

k−1 = 1/(1T R−1
−11), (B.9)

n−c = 2
∑

X�B,A

NX , (B.10)

and

n−d = (NA + NB − 2)
∑

X�B,A

NX . (B.11)

AppendixC. Initialization and calculation of gradients

AppendixC.1 states results given in previous studies. The

gradients and initializations for Scr-4par, iV-elmnt and Scr-Def

are then given in AppendixC.2, AppendixC.3 and AppendixC.4,

respectively. In this section, 1q×r denotes a matrix of dimension

q × r whose all elements are equal to 1.

AppendixC.1. Results from previous studies
The results in this subsection are given in Cumani et al.

(2011). Let the n training i-vectors be collected in a matrix,

Ψ = [ω1 . . .ωn], and all the scores of the training data be col-

lected in a matrix S, i.e., S i j = si j, where si j is given by Eq. (10).

Then S = SP + SQ + Sc + Sk, where

SP = 2ΨT PΨ,
SQ = diag(ΨT QΨ)11×n + (diag(ΨT QΨ)11×n)T ,

Sc = Ψ
T c11×n + (ΨT c11×n)T ,

Sk = k1n×n. (C.1)

The gradient of L̂(γ) in Eq. (18) is given by,

∇L̂(γ) =

⎡⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎣
∇PL̂(γ)

∇QL̂(γ)

∇cL̂(γ)

∇kL̂(γ)

⎤⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎦ =
⎡⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎣

vec(P′)
vec(Q′)

c′

k′

⎤⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎦ , (C.2)

where

P′ = 2ΨGΨT , (C.3)

Q′ = 2vec([Ψ ◦ (1d×nG)]ΨT ), (C.4)

c′ = 2[Ψ ◦ (1d×nG)Ψ]1n×1, (C.5)

k′ = 1T
n×1G1n×1, (C.6)

Gi j =
∂li j

∂si j
, (C.7)

and

li j = l
(
ti j, si j(γ), τ

)
. (C.8)

AppendixC.2. Scr-4Par
The derivative of L̂ with respect to aP, is

∂L̂
∂aP

=
∑

i j

∂li j

∂si j

∂si j

∂aP

=
∑

i j

Gi jS Pi j

= 1T
n×1(G ◦ SP)1n×1. (C.9)

The derivatives ∂L̂
∂aQ

, ∂L̂
∂ac

and ∂L̂
∂ak

are calculated in the same way.

Each of aP, aQ, ac and ak, are initialized to 1.

AppendixC.3. iV-elmnt
We collect the scalings of the i-vector elements in a diagonal

matrix, D, so that ω is replaced by Dω in Eq. (10), i.e.,

si j = ω
T
i DPDω j + ω

T
j DPDωi

+ωT
i DQDωi + ω

T
j DQDω j

+(ωi + ω j)
T Dc + k. (C.10)

Let the contribution to the gradient from terms including P be

denoted ∇(P)

diag(D)
L̂ and similarly for Q and c. We will use matrix

calculus (Minka, 2001) with the convention that the elements

of the matrix derivative are laid out according to the transpose

of the denominator. The contribution from P to the differential

is

dL̂ = tr(P′dPT ). (C.11)

Replacing P with DPD we then get

dL̂ = tr
(
P′d(DPD)T

)
= tr
(
PDP′dD + P′DPdD + DP′DdP

)
, (C.12)

i.e.,

∇(P)

diag(D)
L̂ = diag(PDP′ + P′DP) . (C.13)

The contribution from the terms with Q is calculated in the same

way. For c, we get

dL̂ = c′d(Dc)T

= c′((dcT )DT + cT dDT ), (C.14)

i.e.,

∇(c)

diag(D)
L̂ = diag(c′cT ) = c′ ◦ c. (C.15)

Finally,

∇diag(D)L̂ = ∇(P)

diag(D)
L̂ + ∇(Q)

diag(D)
L̂ + ∇(c)

diag(D)
L̂. (C.16)

The derivative for k is calculated as in AppendixC.2. The scal-

ings of the i-vector elements and k are initialized to 1.

AppendixC.4. Scr-Def
The gradients for c and k in Eq. (C.2) are used without mod-

ification. The contribution from P and Q to the differential is

dL̂ = tr
(
P′dPT + Q′dQT

)
= tr
(
P′dRART

A + P′dQAQT
A − Q′dQAQT

A

)
. (C.17)

Using the fact that P′ is symmetric, we get for the first term

tr
(
P′(dRART

A)
)
= tr
(
P′ (dRA) RT

A

)
+ tr
(
P′RAdRT

A

)
= tr
((

(dRA) RT
A

)T
P′T
)
+ tr
(
P′RAdRT

A

)
= tr
(
2P′RAdRT

A

)
. (C.18)

The other terms are treated analogously, resulting in[∇RA L̂
∇QA L̂

]
=

[
2vec(P′RA)

2vec
(
(P′ − Q′)QA

)
]
. (C.19)
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The regularization term is dealt with by adding 2(P − P̃) to P′
and 2(Q − Q̃) to Q′. For initialization, we use a model estimated

by GT and calculate RA and QA by means of eigendecomposi-

tion of R and Q respectively, e.g.,

QA = E(−Q)D(−Q)
1
2 , (C.20)

where the columns of E(−Q) are the eigenvectors of −Q and

D(−Q) is a diagonal matrix containing the corresponding eigen-

values.
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